Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Clin Kidney J ; 17(4): sfae058, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38660122

RESUMO

Wilson's disease (WD) is a rare inherited disease due to the mutation of the ATP7B gene, resulting in impaired hepatic copper excretion and its pathological accumulation in various organs such as the liver, the nervous system, or the kidneys. Whereas liver failure and neuropsychiatric disorders are the most common features, less is known about the renal complications. We conducted a review of the literature to define the characteristics and pathophysiology of kidney involvement during WD. This review shed light on strong evidence for direct copper toxicity to renal tubular cells. Excessive tubular copper accumulation might present with various degrees of tubular dysfunction, ranging from mild hydroelectrolytic and acid-base disorders to complete Fanconi syndrome. Proximal and distal renal tubular acidosis also favors development of nephrolithiasis, nephrocalcinosis, and bone metabolism abnormalities. Indirect complications might involve renal hypoperfusion as occurs in hepatorenal or cardiorenal syndrome, but also tubular casts' formation during acute hemolysis, rhabdomyolysis, or bile cast nephropathy. Acute kidney failure is not uncommon in severe WD patients, and independently increases mortality. Finally, specific and long-term therapy by D-penicillamin, one of the most efficient drugs in WD, can cause glomerular injuries, such as membranous nephropathy, minimal-change disease, and, rarely, severe glomerulonephritis. Altogether, our study supports the need for interdisciplinary evaluation of WD patients involving nephrologists, with regular monitoring of tubular and glomerular functions, to provide adequate prevention of renal and bone involvement.

3.
Clin Res Hepatol Gastroenterol ; 48(5): 102322, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503362

RESUMO

Enteric hyperoxaluria is a metabolic disorder resulting from conditions associated with fatty acid malabsorption and characterized by an increased urinary output of oxalate. Oxalate is excessively absorbed in the gut and then excreted in urine where it forms calcium oxalate crystals, inducing kidney stones formation and crystalline nephropathies. Enteric hyperoxaluria is probably underdiagnosed and may silently damage kidney function of patients affected by bowel diseases. Moreover, the prevalence of enteric hyperoxaluria has increased because of the development of bariatric surgical procedures. Therapeutic options are based on the treatment of the underlying disease, limitation of oxalate intakes, increase in calcium salts intakes but also increase in urine volume and correction of hypocitraturia. There are few data regarding the natural evolution of kidney stone events and chronic kidney disease in these patients, and there is a need for new treatments limiting kidney injury by calcium oxalate crystallization.

4.
Sci Rep ; 14(1): 6078, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480876

RESUMO

Cotrimoxazole (Trimethoprim/Sulfamethoxazole-SMX) is frequently used in critically ill and immunocompromised patients. SMX is converted to N-acetyl-sulfamethoxazole (NASM) and excreted by the kidneys. NASM may form crystals in urine, especially in acid urine, that may induce a crystalline nephropathy. However, the imputability of crystals in acute kidney injury (AKI) has not been proven. We aimed to assess whether NASM crystals may promote AKI and to investigate risk factors associated with NASM crystalline nephropathy. Patients from Ile-de-France, France who developed AKI under SMX treatment introduced during hospitalization and had a crystalluria positive for NASM crystals were selected. Patients with excessive preanalytical delay for crystalluria or missing data regarding SMX treatment were excluded. We used the Naranjo score to assess the causal relationship between SMX and the development of AKI in patients with positive NASM crystalluria. Fourteen patients were included. SMX was the probable cause of AKI for 11 patients and a possible cause for 3 patients according to Naranjo score. Patients were exposed to high doses of SMX (but within recommended ranges), and most of them had a preexisting chronic kidney disease and were hypoalbuminemic. Urine pH was mildly acid (median 5.9). AKI occured more rapidly than expected after introduction of SMX (median 4 days) and recovered rapidly after drug discontinuation in most, but not all, cases. SMX is a probable cause of crystalline nephropathy. Monitoring of crystalluria in patients exposed to SMX may be of interest to prevent the development of crystalline nephropathy. Approval number of the study: BPD-2018-DIAG-008.


Assuntos
Injúria Renal Aguda , Cristalúria , Humanos , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Prognóstico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Fatores de Risco , Estudos Retrospectivos
5.
Lab Chip ; 24(7): 2017-2024, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407354

RESUMO

Effective prevention of recurrent kidney stone disease requires the understanding of the mechanisms of its formation. Numerous in vivo observations have demonstrated that a large number of pathological calcium oxalate kidney stones develop on an apatitic calcium phosphate deposit, known as Randall's plaque. In an attempt to understand the role of the inorganic hydroxyapatite phase in the formation and habits of calcium oxalates, we confined their growth under dynamic physicochemical and flow conditions in a reversible microfluidic channel coated with hydroxyapatite. Using multi-scale characterization techniques including scanning electron and Raman microscopy, we showed the successful formation of carbonated hydroxyapatite as found in Randall's plaque. This was possible due to a new two-step flow seed-mediated growth strategy which allowed us to coat the channel with carbonated hydroxyapatite. Precipitation of calcium oxalates under laminar flow from supersaturated solutions of oxalate and calcium ions showed that the formation of crystals is a substrate and time dependent complex process where diffusion of oxalate ions to the surface of carbonated hydroxyapatite and the solubility of the latter are among the most important steps for the formation of calcium oxalate crystals. Indeed when an oxalate solution was flushed for 24 h, dissolution of the apatite layer and formation of calcium carbonate calcite crystals occurred which seems to promote calcium oxalate crystal formation. Such a growth route has never been observed in vivo in the context of kidney stones. Under our experimental conditions, our results do not show any direct promoting role of carbonated hydroxyapatite in the formation of calcium oxalate crystals, consolidating therefore the important role that macromolecules can play in the process of nucleation and growth of calcium oxalate crystals on Randall's plaque.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Humanos , Medula Renal/patologia , Cristalização , Cálcio , Microfluídica , Cálculos Renais/química , Cálculos Renais/patologia , Apatitas , Oxalatos , Íons , Hidroxiapatitas
6.
Am J Physiol Renal Physiol ; 326(2): F278-F284, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059298

RESUMO

The urine concentration impairment responsible for hyposthenuria in sickle cell nephropathy is currently thought to be a consequence of renal medulla lesions, which lead to nephrogenic diabetes insipidus. The objective of the present study was to investigate the mechanism of hyposthenuria in patients with sickle cell anemia. We performed an observational study of patients with homozygous SS sickle cell anemia and data available on the fasting plasma antidiuretic hormone (ADH) concentration. A total of 55 patients were analyzed. The fasting plasma ADH values ranged from 1.2 to 15.4 pg/mL, and 82% of the patients had elevated ADH values and low fasting urine osmolality (<505 mosmol/kgH2O). Plasma ADH was positively associated with plasma tonicity and natremia (P < 0.001). None of the patients experienced polyuria and fasting free water clearance was negative in all cases, thus, ruling out nephrogenic diabetes insipidus. The tertile groups did not differ with regard to fasting urine osmolality, plasma renin level, mGFR, or several hemolysis biomarkers. The negative fasting free water clearance in all cases and the strong association between 24-h osmolal clearance and 24-h diuresis favors the diagnosis of osmotic diuresis due to an impaired medullary gradient, rather than lesions to collecting tubule.NEW & NOTEWORTHY The urine concentration impairment in sickle cell anemia is an osmotic diuresis related to an impaired renal medullary gradient leading to an ADH plateau effect. The fasting plasma ADH was high in the context of a basic state of close-to-maximal urine concentration probably driven by short nephrons maintaining a cortex-outer medullary gradient (about 400 milliosmoles). The patients had a low daily osmoles intake without evidence of thirst dysregulation so no one experienced polyuria.


Assuntos
Anemia Falciforme , Diabetes Insípido Nefrogênico , Diabetes Insípido , Diabetes Mellitus , Humanos , Poliúria , Diurese , Concentração Osmolar , Antidiuréticos , Água
7.
Sci Rep ; 13(1): 21513, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057332

RESUMO

Rhabdomyolysis is a risk factor for acute kidney injury, transition towards chronic kidney disease, and death. The role of calcium phosphate deposits in the mechanisms of rhabdomyolysis-induced acute kidney injury (RAKI) is still unclear. Better insight of the role calcium in RAKI could lead to new therapeutic avenues. Here, we show in a mice model of RAKI that calcium phosphate deposits were frequent in the kidney (hydroxyapatite) and partly correlated with the severity of the kidney injury. However, the intensity of deposits was highly heterogeneous between mice. Treatment with sodium chloride, sodium bicarbonate or inorganic pyrophosphate (PPi; an inhibitor of the calcium phosphate crystallization), or combinations thereof, did not improve kidney outcomes and hydroxyapatite deposition during RAKI. Unexpectedly, Abcc6 knockout mice (ko), characterized by PPi deficiency, developed less severe RAKI despite similar rhabdomyolysis severity, and had similar hydroxyapatite deposition suggesting alternative mechanisms. This improved kidney outcome at day 2 translated to a trend in improved glomerular filtration rate at month 2 in Abcc6-/-mice and to significantly less interstitial fibrosis. In addition, whereas the pattern of infiltrating cells at day 2 was similar between wt and ko mice, kidneys of Abcc6-/- mice were characterized by more CD19+ B-cells, less CD3+ T-cells and a lower R1/R2 macrophage ratio at month 2. In summary, kidney calcium phosphate deposits are frequent in RAKI but hydration with sodium bicarbonate or sodium chloride does not modify the kidney outcome. Blocking ABCC6 emerges as a new option to prevent RAKI and subsequent transition toward kidney fibrosis.


Assuntos
Injúria Renal Aguda , Rabdomiólise , Camundongos , Animais , Bicarbonato de Sódio , Cloreto de Sódio , Rim/patologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Camundongos Knockout , Fibrose , Rabdomiólise/complicações , Fosfatos de Cálcio , Hidroxiapatitas , Proteínas Associadas à Resistência a Múltiplos Medicamentos
9.
J Am Soc Nephrol ; 34(11): 1823-1842, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678257

RESUMO

SIGNIFICANCE STATEMENT: Autophagy protects podocytes from injury in diabetic kidney disease (DKD). Restoring glomerular autophagy is a promising approach to limit DKD. This study demonstrates a novel regulatory mechanism of autophagy that blocks this critical protection of the glomerular filtration barrier. We demonstrated that TRPC6 induced in podocytes in mouse models of diabetes mediates calpain activation, thereby impairing podocyte autophagy, causing injury and accelerating DKD. Furthermore, this study provides proof of principle for druggable targets for DKD because restoration of podocyte autophagy by calpain inhibitors effectively limits glomerular destruction. BACKGROUND: Diabetic kidney disease is associated with impaired podocyte autophagy and subsequent podocyte injury. The regulation of podocyte autophagy is unique because it minimally uses the mTOR and AMPK pathways. Thus, the molecular mechanisms underlying the impaired autophagy in podocytes in diabetic kidney disease remain largely elusive. METHODS: This study investigated how the calcium channel TRPC6 and the cysteine protease calpains deleteriously affect podocyte autophagy in diabetic kidney disease in mice. We demonstrated that TRPC6 knockdown in podocytes increased the autophagic flux because of decreased cysteine protease calpain activity. Diabetic kidney disease was induced in vivo using streptozotocin with unilateral nephrectomy and the BTBR ob/ob mouse models. RESULTS: Diabetes increased TRPC6 expression in podocytes in vivo with decreased podocyte autophagic flux. Transgenic overexpression of the endogenous calpain inhibitor calpastatin, as well as pharmacologic inhibition of calpain activity, normalized podocyte autophagic flux, reduced nephrin loss, and prevented the development of albuminuria in diabetic mice. In kidney biopsies from patients with diabetes, we further confirmed that TRPC6 overexpression in podocytes correlates with decreased calpastatin expression, autophagy blockade, and podocyte injury. CONCLUSIONS: Overall, we discovered a new mechanism that connects TRPC6 and calpain activity to impaired podocyte autophagy, increased podocyte injury, and development of proteinuria in the context of diabetic kidney disease. Therefore, targeting TRPC6 and/or calpain to restore podocyte autophagy might be a promising therapeutic strategy for diabetic kidney disease.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Humanos , Camundongos , Animais , Canal de Cátion TRPC6/fisiologia , Podócitos/metabolismo , Nefropatias Diabéticas/metabolismo , Calpaína/metabolismo , Diabetes Mellitus Experimental/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Modelos Animais de Doenças , Autofagia
10.
Sci Rep ; 13(1): 15519, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726292

RESUMO

Calcific uremic arteriolopathy (CUA) is a severely morbid disease, affecting mostly dialyzed end-stage renal disease (ESRD) patients, associated with calcium deposits in the skin. Calcifications have been identified in ESRD patients without CUA, indicating that their presence is not specific to the disease. The objective of this retrospective multicenter study was to compare elastic fiber structure and skin calcifications in ESRD patients with CUA to those without CUA using innovative structural techniques. Fourteen ESRD patients with CUA were compared to 12 ESRD patients without CUA. Analyses of elastic fiber structure and skin calcifications using multiphoton microscopy followed by machine-learning analysis and field-emission scanning electron microscopy coupled with energy dispersive X-ray were performed. Elastic fibers specifically appeared fragmented in CUA. Quantitative analyses of multiphoton images showed that they were significantly straighter in ESRD patients with CUA than without CUA. Interstitial and vascular calcifications were observed in both groups of ESRD patients, but vascular calcifications specifically appeared massive and circumferential in CUA. Unlike interstitial calcifications, massive circumferential vascular calcifications and elastic fibers straightening appeared specific to CUA. The origins of such specific elastic fiber's alteration are still to be explored and may involve relationships with ischemic vascular or inflammatory processes.


Assuntos
Calciofilaxia , Falência Renal Crônica , Calcificação Vascular , Humanos , Tecido Elástico , Falência Renal Crônica/complicações , Margens de Excisão , Microscopia Eletrônica de Varredura
14.
Rheumatology (Oxford) ; 62(12): 3978-3983, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37021930

RESUMO

OBJECTIVES: To investigate whether the lactate dehydrogenase D (LDHD) gene deficiency causes juvenile-onset gout. METHODS: We used whole-exome sequencing for two families and a targeted gene-sequencing panel for an isolated patient. d-lactate dosages were analysed using ELISA. RESULTS: We demonstrated linkage of juvenile-onset gout to homozygous carriage of three rare distinct LDHD variants in three different ethnicities. In a Melanesian family, the variant was (NM_153486.3: c.206C>T; rs1035398551) and, as compared with non-homozygotes, homozygotes had higher hyperuricaemia (P = 0.02), lower fractional clearance of urate (P = 0.002), and higher levels of d-lactate in blood (P = 0.04) and urine (P = 0.06). In a second, Vietnamese, family, very severe juvenile-onset gout was linked to homozygote carriage of an undescribed LDHD variant (NM_153486.3: c.1363dupG) leading to a frameshift followed by a stop codon, p.(AlaGly432fsTer58). Finally, a Moroccan man, with early-onset and high d-lactaturia, whose family was unavailable for testing, was homozygous for another rare LDHD variant [NM_153486.3: c.752C>T, p.(Thr251Met)]. CONCLUSION: Rare, damaging LDHD variants can cause autosomal recessive early-onset gout, the diagnosis of which can be suspected by measuring high d-lactate levels in the blood and/or urine.


Assuntos
Gota , Hiperuricemia , Masculino , Humanos , Gota/genética , Hiperuricemia/genética , Homozigoto , Ácido Láctico , Lactato Desidrogenases/genética
15.
Kidney Int Rep ; 8(3): 596-605, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938085

RESUMO

Introduction: Exome sequencing (ES) has widened the field of nephrogenomics in adult nephrology. In addition to reporting the diagnostic yield of ES in an adult cohort study, we investigated the clinical implications of molecular diagnosis and developed a clinical score to predict the probability of obtaining positive result. Methods: From September 2018 we have used ES to prospectively perform a first-tier liberal exploration of adult nephropathies of unknown origin and/or when a genetic kidney disease was clinically suggested. We also analyzed copy number variant using the same assay. Results: Molecular diagnosis was made in 127 of 538 patients sequenced (diagnostic yield: 24%), comprising 47 distinct monogenic disorders. Eight of these monogenic disorders (17% [8/47]) accounted for 52% of genetic diagnoses. In 98% (n = 125/127) of the patients, the genetic information was reported to have major clinical implications. We developed a 4-value clinical score to predict the probability of obtaining a molecular diagnosis (area under the receiver operating characteristics curve [AUC] 0.726 [95% confidence interval: 0.670-0.782]) (available at http://allogenomics.com/score). Conclusion: This study reinforces the role of ES as a first-tier exploration for adult chronic kidney disease patients in whom phenotypes are often poor and atypical. Although external validation is required, our clinical score could be a useful tool for the implementation of nephrogenomics in adults.

16.
Sci Rep ; 13(1): 85, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596813

RESUMO

Biallelic pathogenic variants in the SLC34A3 gene, encoding for the NPT2c cotransporter, cause Hereditary Hypophosphatemic Rickets with Hypercalciuria (HHRH). However, the associated phenotype is highly variable. In addition, mice deleted for Slc34a3 exhibit a different phenotype compared to humans, without urinary phosphate leakage. The mechanisms by which SLC34A3 variants disrupt phosphate/calcium metabolism are un-completely understood. In this study we explored these mechanisms in vitro using SLC34A3 variants identified in patients with urinary phosphate leakage. We analyzed the consequences of these variants on NPT2c function and the link with the phenotype of the patients. We studied 20 patients with recurrent nephrolithiasis and low serum phosphate concentration harboring variants in the SLC34A3 gene. Half of the patients carried homozygous or composite heterozygous variants. Three patients had in addition variants in SLC34A1 and SLC9A3R1 genes. All these patients benefited from a precise analysis of their phenotype. We generated 13 of these mutants by site-directed mutagenesis. Then we carried out transient transfections of these mutants in HEK cells and measured their phosphate uptake capacity under different conditions. Among the 20 patients included, 3 had not only mutations in NPT2c but also in NPT2a or NHERF1 genes. Phosphate uptake was decreased in 8 NPT2c mutants studied and normal for 5. Four variants were initially categorized as variants of uncertain significance. Expression of the corresponding mutants showed that one did not modify phosphate transport, two reduced it moderately and one abolished it. Co-transfection of the NPT2c mutants with the wild-type plasmid of NPT2c or NPT2a did not reveal dominant negative effect of the mutants on NPT2c-mediated phosphate transport. A detailed analysis of patient phenotypes did not find a link between the severity of the disorder and the level of phosphate transport impairment. NPT2c mutations classified as ACMG3 identified in patients with renal phosphate leak should be characterized by in vitro study to check if they alter NPT2c-mediated phosphate transport since phosphate uptake capacity may not be affected. In addition, research for mutations in NHERF1 and NPT2a genes should always be associated to NPT2c sequencing.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc , Animais , Humanos , Camundongos , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/patologia , Rim/metabolismo , Mutação , Fenótipo , Fosfatos/metabolismo
17.
Sci Rep ; 12(1): 16924, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209291

RESUMO

Non-invasive multi-scale and multimodal 3D characterization of heterogeneous or hierarchically structured intact mesoscale samples is of paramount importance in tackling challenging scientific problems. Scanning hard X-ray tomography techniques providing simultaneous complementary 3D information are ideally suited to such studies. However, the implementation of a robust on-site workflow remains the bottleneck for the widespread application of these powerful multimodal tomography methods. In this paper, we describe the development and implementation of such a robust, holistic workflow, including semi-automatic data reconstruction. Due to its flexibility, our approach is especially well suited for on-the-fly tuning of the experiments to study features of interest progressively at different length scales. To demonstrate the performance of the method, we studied, across multiple length scales, the elemental abundances and morphology of two complex biological systems, Arabidopsis plant seeds and mouse renal papilla samples. The proposed approach opens the way towards routine multimodal 3D characterization of intact samples by providing relevant information from pertinent sample regions in a wide range of scientific fields such as biology, geology, and material sciences.


Assuntos
Imageamento Tridimensional , Tomografia Computadorizada por Raios X , Animais , Imageamento Tridimensional/métodos , Camundongos , Cintilografia , Tomografia Computadorizada por Raios X/métodos , Fluxo de Trabalho
19.
J Am Soc Nephrol ; 33(6): 1154-1171, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523579

RESUMO

BACKGROUND: The pathophysiology of AKI during tumor lysis syndrome (TLS) is not well understood due to the paucity of data. We aimed to decipher crystal-dependent and crystal-independent mechanisms of TLS-induced AKI. METHODS: Crystalluria, plasma cytokine levels, and extracellular histones levels were measured in two cohorts of patients with TLS. We developed a model of TLS in syngeneic mice with acute myeloid leukemia, and analyzed ultrastructural changes in kidneys and endothelial permeability using intravital confocal microscopy. In parallel, we studied the endothelial toxicity of extracellular histones in vitro. RESULTS: The study provides the first evidence that previously described crystal-dependent mechanisms are insufficient to explain TLS-induced AKI. Extracellular histones that are released in huge amounts during TLS caused profound endothelial alterations in the mouse model. The mechanisms of histone-mediated damage implicates endothelial cell activation mediated by Toll-like receptor 4. Heparin inhibits extracellular histones and mitigates endothelial dysfunction during TLS. CONCLUSION: This study sheds new light on the pathophysiology of TLS-induced AKI and suggests that extracellular histones may constitute a novel target for therapeutic intervention in TLS when endothelial dysfunction occurs.


Assuntos
Injúria Renal Aguda , Síndrome de Lise Tumoral , Injúria Renal Aguda/terapia , Animais , Endotélio , Histonas , Humanos , Rim , Camundongos , Síndrome de Lise Tumoral/tratamento farmacológico , Síndrome de Lise Tumoral/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...